-Supervised Learning
-give "right answers"
-Regression : Housing price prediction
-predict numbers. infinitely many possible outputs
-Classification : Beast cancer detection
-predict categories. small niumberof possibile outputs
-Unsupervised Learning
-to find pattern
-clustering algorithm : used in Google news , DNA microarray clustering
-another example : Grouping customers
-anomaly detection : find unusual data points
-demensionality reduction : compress data using fewer numbers
Regression Model
Linear Regression
-predicts numbers
Terminology
-Training set : Data used to train the model
- Notation : x="input" variable feature
y="output" variable, "target" variable
m = number of training example
(x,y) = single training example
괄호 안의 첨자(승)으로써 몇번째 값인지 나타낸다.
-"y-hat"
- x=model
- How to represent f? fw,b(X) = wx + b
f(X)
- Univariate linear regression = one variable
(Hands On Lab)
x_train.shape[0] is the length of the array
len() can also be used
i = 0
x_i = x_train[i]
y_i = y_train[i]
print(f"(x^({i}), y^({i})) = ({x_i}, {y_i})")
# Plot the data points
plt.scatter(x_train, y_train, marker='x', c='r')
#Set the title
plt.title("Housing Prices")
#Set the y-axis label
plt.ylabel('Price (in 1000s of dollars)')
#Set the x-axis label
plt.xlabel('Size (1000 sqft)')
plt.show()
def compute_model_output(x, w, b):
m = x.shape[0]
f_wb = np.zeros(m)
for i in range(m):
f_wb[i] = w* x[i] + b
return f_wb
tmp_f_wb = compute_model_output(x_train, w, b)
#Plot our model prediction
plt.plot(x_train, tmp_f_wb, c='b', label='Our Prediction')
#Plot the data points
plt.scatter(x_train, y_train, marker='x', c='r', label='Actual Values')
#Set the title
plt.title("Housing Prices")
#Set the y-axis label
plt.ylabel('Price (in 1000s of dollars)')
#Set the x-axis label
plt.xlabel('Size (1000 sqft)')
plt.legend()
plt.show()
w=200
b=100
x_i = 1.2
cost_1200sqft = w* x_i + b
print(f"${cost_1200sqft:.0f} thousand dollars")
Cost function formula
w,b : parameters, coefficients, weights
'미국유학 > Andrew En ML Coursera' 카테고리의 다른 글
7.21 Regression Model (0) | 2024.07.22 |
---|